On the long run, it is only possible to facilitate know-how and innovation in the context of quantum technologies of the second generation in germany by an adequate education in schools and universities. QuBIT EDU is a network of research groups in physics education, which develop curricula and implement empirical research projects to drive the field of modern quantum physics education.

Spokesman of the network: Prof. Dr. Rainer Müller

Job Posts

Dates

Quantum technologies of the 2nd generation

quantum
communication

quantum
computing

quantum
simulations

quantum
sensoring/
quantum
metrology

Outreach/
Education

fundamental
research

Network

München Münster Bochum Bottrup Kaiserslautern Stuttgart Freiburg Hannover Rostock Erlangen- Nürnberg Dresden Jena Braunschweig Leipzig Aachen QuBit EDU

Participating Research Groups

Braunschweig | Technische Universität Braunschweig

Prof. Dr. Rainer Müller

PD Dr. Dagmar Hilfert-Rüppell

Dr. Malte S. Ubben

Dr. Riccardo Laurenza

Franziska Greinert, M. Ed.

Ismet Dogan, M. Ed.

Tim Overwin, M. Ed.

Focal points
  • Coordination in the field of education of the European Quantum Flagship Project QUCATS (QTEdu, EU), see also qtedu.eu
  • European competence framework for quantum technologies and needs analysis
  • Development and testing of a modularized training program for industry (QTIndu project)
  • Textbook concept for quantum technologies for engineers (deGruyter)
  • MasterClasses on quantum technologies (QuantumFrontiers Cluster of Excellence)
  • R-Escape game environment for getting started with quantum programming: Quantum computing (QuantumVR, available on Steam (BMBF))
  • Quantum physics at school (Projekt milq: www.milq.info; Wesenszüge der Quantenphysik)
Weblinks & Publications
  • R. Müller, H. Wiesner (2002). Teaching Quantum Mechanics on an Introductory Level, American Journal of Physics 70, 200.
  • R. Müller (2016). Die Quantenphysik im Spannungsfeld zwischen Fachlichkeit, empirischer Forschung und Schulpraxis In: Maurer, Christian (Hrsg.): Authentizität und Lernen - das Fach in der Fachdidaktik. Regensburg: Universität Regensburg S. 13-24.
  • R. Müller, H. Schecker (2018). Schülervorstellungen zur Quanten- und Atomphysik. In: Schecker H., Wilhelm T., Hopf M., Duit R. (Hrsg.) Schülervorstellungen und Physikunterricht. Springer Spektrum, Berlin, Heidelberg, S. 209-224.
  • R. Müller, O. Mishina (2019). milq – Quantum Physics in Secondary School, to appear in the Proceedings of the GIREP Conference 2019 in Budapest.
  • F. Greinert, R. Müller, P. Bitzenbauer, M. S. Ubben, K.-A.Weber (2023). Future quantum workforce: Competences, requirements and forecasts. Phys. Rev. Phys. Educ. Res. 19, 010137.
  • F. Greinert, R. Müller (2023). European Competence Framework for Quantum Technologies, doi: 10.5281/zenodo.6834598, version 2.
  • R. Müller, F. Greinert (2023). Quantentechnologien: Für Ingenieure, Berlin, Boston: De Gruyter Oldenbourg. https://doi.org/10.1515/9783110717457.

Bochum | Ruhr Universität Bochum

Prof. Dr. Heiko Krabbe

Dr. Marco Seiter

Focal points
  • Single-photon experiments with the quantum case for schools
  • Development of a phenomenon-oriented approach to the essential features of quantum physics/li>
Weblinks & Publications
  • Cleve, J.-N., Die Wesenszüge der Quantenphysik qualitativ und quantitativ – Entwicklung eines Lehrgangs zu Experimenten mit dem Quantenkoffer. Masterarbeit mit Unterrichtsmaterial

Dresden | Technische Universität Dresden

Prof. Dr. Gesche Pospiech

Moritz Förster

Julia Unger

Carsten Albert

Weblinks:

tu-dresden.de/mn/physik/didphy

Focal points
  • Quantum information in physics lessons
    1. Quantum computing in vocational education: Project QUILT
      Quantum physics at intermediate level: Projekt Qubits4Pupils (mit IFW Dresden)
      Projekt DQC-2STAP in the context of QTEdu
  • Mathematics in physics lessons
Weblinks & Publications
  • Pospiech, G. (1999). Quantenkryptographie. Ein elementarer Zugang zur Quantentheorie. Physik in der Schule, 37(3), 201–205.
  • Pospiech, G. (2003). Philosophy and quantum mechanics in science teaching. Science & Education, 12(5–6), 559–571.
  • Pospiech, G., & Schöne, M. (2014). Quantum Physics in Teacher Education. Frontiers of Fundamental Physics and Physics Education Research, 407–416.
  • Pospiech, G., & Schorn, B. (2016). Der Quantencomputer in der Schule. Praxis der Naturwissenschaften - Physik in der Schule, 65(1), 5–11.
  • Pospiech, G. (2019). Pre-Service Teacher’s Views on the use of Metaphors for Describing the Concepts of Uncertainty and Entanglement in Teaching Quantum Physics. International Journal of Physics & Chemistry Education, 11(1), 1–5.
  • Pospiech, G., Merzel, A., Zuccarini, G., Weissman, E., Katz, N., Galili, I., Santi, L., & Michelini, M. (2021). The Role of Mathematics in Teaching Quantum Physics at High School. In B. Jarosievitz & C. Sükösd (Hrsg.), Teaching-Learning Contemporary Physics (S. 47–70). Springer International Publishing. https://doi.org/10.1007/978-3-030-78720-2_4
  • Pospiech, G. (2021a). Die zweite Quantenrevolution—Quanteninformatik im Physikunterricht. PhyDid B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung, 1(0). http://www.phydid.de/index.php/phydid-b/article/view/1158
  • Pospiech, G. (2021b). Quantencomputer & Co: Grundideen und zentrale Begriffe der Quanteninformation verständlich erklärt. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-30445-4
  • Pospiech, G. (2021c). Quantum Cryptography as an Approach for Teaching Quantum Physics. In B. Jarosievitz & C. Sükösd (Hrsg.), Teaching-Learning Contemporary Physics (S. 19–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-78720-2_2
  • Michelini, M., Faletič, S., & Pospiech, G. (2023). Approaches and Teaching Resources for Teacher Education in Quantum Physics. In J. Borg Marks & P. Galea (Eds.), Physics Teacher Education (pp. 77–91). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44312-1_6
  • Albert, C., & Pospiech, G. (2023). Quantenphysik in Klasse 9: Ergebnisse einer Akzeptanzbefragung für ein Spin-First-Unterrichtskonzept. PhyDid B - Didaktik Der Physik - Beiträge Zur DPG-Frühjahrstagung, 1(1). https://ojs.dpg-physik.de/index.php/phydid-b/article/view/1370

Erlangen | FAU Erlangen-Nürnberg

Prof. Dr. Jan-Peter Meyn

Akad. Rat Dr. Philipp Bitzenbauer

Focal points
Empirische Lehr-Lernforschung zur Quantenphysik
  • Concept development of learners in quantum physics
  • Students' ideas about concepts of quantum physics
  • Quantum technology in the training of engineers
Weblinks & Publications
  • Bronner, P.; Strunz, A.; Silberhorn, C.; Meyn, J.-P. (2009). Interactive screen experiments with single photons. European Journal of Physics 30. 345
  • Bronner, P.; Strunz, A.; Silberhorn, C.; Meyn, J.-P. (2009). Demonstrating quantum random with single photons. European Journal of Physics 30. 1189
  • Bitzenbauer, P.; Meyn, J.-P. (2019). Quantenphysik g²reifbar unterrichten. Plus Lucis 3/2019, S. 17-21
  • Bitzenbauer, P.; Meyn, J.-P. (2020). Von Koinzidenzen zu Wesenszügen der Quantenphysik: Erste Ergebnisse einer summativen Evaluation des Erlanger Unterrichtskonzepts zur Quantenoptik“. Erscheint in: PhyDid-B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung, 2020
  • Bitzenbauer, P.; Meyn, J.-P. (2020). A new teaching concept on quantum physics in secondary schools. Physics Education 55. 055031
  • Bitzenbauer, P. (2021). Quantum Physics Education Research over the last Two Decades: A Bibliometric Analysis. Education Sciences, 11(11), 699.
  • Bitzenbauer, P. (2021). Effect of an introductory quantum physics course using experiments with heralded photons on pre-university students' conceptions about quantum physics. Physical Review Physics Education Research, 17, 020103.
  • Bitzenbauer, P., Veith, J., Girnat, B., & Meyn, J.-P. (2022). Assessing engineering students' conceptual understanding of quantum optics. Physics, 4(4), 1180-1201.
  • Ubben, M., & Bitzenbauer, P. (2023). Exploring the relationship between students’ conceptual understanding and model thinking in quantum optics. Frontiers in Quantum Science and Technology, 2, 1207619.
  • Bitzenbauer, P., Teuner, T., Veith, J., & Kulgemeyer, C. (2023). (How) Do pre-service teachers use YouTube features in the selection of instructional videos for physics teaching? Research in Science Education. https://doi.org/10.1007/s11165-023-10148-z

Freiburg im Breisgau | Albert-Ludwigs-Universität

Prof. Dr. Thomas Filk

Andreas Woitzik

Focal points
  • Interpretations of quantum theory
  • Quantum information in physics and computer science lessons
  • Misconceptions about quantum information
  • University curricula on quantum information for the teaching profession
  • Quantum state preparation in micromasers
Weblinks & Publications

QuantumPennyFlip

Filk, T. (2019). Quantenmechanik (nicht nur) für Lehramtsstudierende. Berlin: Springer.

Hannover | Leibnitz Universität Hannover

Jun. Prof. Dr. Susanne Weßnigk

Dr. Kim-Alessandro Weber

Dr. Rüdiger Scholz

Dr. Oliver Burmeister (Fortbildung für Lehrkräfte “Quantenphysik”)

Prof. Dr. Gunnar Friege

MSc. Stina Scheer

Moritz Waitzmann

Focal points
  • Empirical research on the teaching of quantum physics in schools, in particular with regard to the development and research of effective key experiments
  • Development and evaluation of 2nd generation quantum physics experiments at the university (internships and student labs)
  • Further training on the quantum physics course according to the KC Niedersachsen with reference to current research (2nd generation experiments)
  • Participation in the Quantum Frontiers Cluster of Excellence
  • Conception and implementation of MasterClasses in quantum physics
Weblinks & Publications

foeXlab

  • Waitzmann, M., Scholz, R. & Weßnigk, S. Forschendes Lernen identifizieren und abbilden. Der mathematische und naturwissenschaftliche Unterricht: MNU
  • Scholz, R., Friege, G., Weber, K.-A. (2018). Undergraduate quantum optics: experimental steps to quantum physics, European Journal of Physics, Volume 39, Number 5
  • Weber, K.-A., Scholz, R. (2018). Statistische Optik – Messung von Lichtfluktuationen mit einer programmierbaren LED. phydid B 2018
  • Scholz, R., Friege, G., Weber, K.-A. (2016). Undergraduate experiments on statistical optics. European Journal of Physics, Volume 37, Number 5, 055302
  • Scholz, R., Weßnigk, S. & Weber, K. (2020). A Classical to Quantum Transition via Key Experiments. European Journal of Physics. Doi: 10.1088/1361-6404/ab8e52

Jena | Friedrich-Schiller-Universität Jena

Prof. Dr. Holger Cartarius

Stefan Aehle

Dustin-Philipp Preissler

Focal points
  • Analogy experiments on quantum physics and quantum technologies
  • Multi-perspective student laboratory on quantum physics with various analogy approaches and real quantum physics experiments
  • School assignments on quantum physics and quantum technologies
  • Teacher training on quantum physics and quantum technologies
  • Didactic reconstruction of nonlinear and quantum optics within the SFB 1375 NOA – Nonlinear Optics down to Atomic scales
  • Quanten-Bildungebungsaufbau für die Wissenschaftskommunikation
  • Public relations work on quantum technologies within the Carl Zeiss Foundation Center for Quantum Photonics
Weblinks & Publications

Kaiserslautern | Technische Universität Kaiserslautern

Michael Thees

In cooperation with

Prof. Dr. Michael Fleischhauer (FB Physik), Georg von Freymann (FB Physik/Fraunhofer ITWM), Paul Lukowicz (FB Informatik/DFKI), Herwig Ott (FB Physik), Norbert Wehn (FB Elektro- und Informationstechnik), Artur Widera (FB Physik)

Schule
Entwicklung, Untersuchung und Verbreitung von
  • Courses in quantum technologies with web-based activities such as Virtual Quantum Lab (AR/VR applications) or simulations in combination with short explanatory videos
  • Experiments that provide students with initial practical experience in the field of quantum physics and quantum technologies (physical background, applications) for various educational levels (school, bachelor's and master's level)
  • Teacher training courses on quantum technologies and dissemination of the developed materials (elementarization of QT courses for schools and outreach activities)
  • QT concept tests and validation with eye tracking analyses
University training
  • Interdisciplinary QT course for students of physics, computer science and engineering (combination of theoretical and experimental content with physical laboratory practicals; e.g. quantum cryptography, quantum computing etc.).
  • Development, investigation and dissemination of experiments and associated learning materials

All of this work is carried out in close cooperation with the participating or associated colleagues from the Department of Physics, Computer Science and Engineering as well as DFKI and Fraunhofer ITWM.

Weblinks & Publications

AG Kuhn

  • outreach project in TRR Spin+X
  • Hochberg, K. & Kuhn, J. (2019). What do scientists do? Increasing Awareness of social and networking aspects in everyday activities of scientists. Progress in Science Education (PriSE), 2 (1).
    dx.doi.org/10.25321/prise.2019.849
  • Küchemann, S., Becker, S., Klein, P. & Kuhn, J. (2020). Classification of students' conceptual understanding in STEM education using their visual attention distributions: A comparison of three machine-learning ap-proaches. In H. C. Lane, S. Zvacek & J. Uhomoibhi J. (eds), Proceedings of the 12th International Conference on Computer Supported Education - Volume 2: CSEDU (pp. 36-46.). Setúbal, Portugal: SciTePress-Science and Technology Publications, Lda.
  • Zangerle, S., Kuhn, J. & Widera, A. (2018). Einsatz von Classroom Response Systemen in Übungen. Progress in Science Education (PriSE), 1 (2).**
    dx.doi.org/10.25321/prise.2018.807

Leipzig | Universität Leipzig

Vertr.-Prof. Dr. Joaquin Marc Veith

Focal points
Empirical teaching and learning research on quantum physics
  • Digital media use and quantum physics
Weblinks & Publications
  • Bitzenbauer, P., Teuner, T., Veith, J., & Kulgemeyer, C. (2023). (How) Do pre-service teachers use YouTube features in the selection of instructional videos for physics teaching? Research in Science Education. https://doi.org/10.1007/s11165-023-10148-z

München | Ludwig-Maximilians-Universität & Technische Universität München

Prof. Dr. Jochen Kuhn (LMU Physik)

Prof. Dr. Alexander Holleitner (TUM Physik)

Prof. Dr. Jan von Delft (LMU Physik)

Dr. Stefan Küchemann (LMU Physik)

Dr. Silke Stähler-Schöpf (PhotonLab)

Dr. Cecilia Scorza-Lesch (LMU Koordinatorin für Schulkontakte)

Dr. Tatjana Wilk (MCQST, Öffentlichkeitsarbeit)

University training

The Master's degree program in Quantum Science & Technology (QST) is offered jointly by the Technischen Universität München (LMU). It is designed for a two-year period in which students receive a research-based education at the interface between natural sciences, engineering and mathematics and gain an early insight into current research at the highest international level. Students can take courses at both universities in order to design their individual study plan. An important focus is on interdisciplinary education. The faculties of physics, chemistry, mathematics and computer science, electrical engineering and information technology at both Munich universities are involved in teaching. Students also benefit from the research environment of the Cluster of Excellence Munich Center for Quantum Science and Technology (MCQST). The QST degree programme goes well beyond the standard quantum mechanics curriculum, as the concepts of superposition and entanglement are of central importance in the modern application of quantum technologies (Quantum2.0). The most important course contents include quantum computing, quantum sensor technology, quantum simulation, quantum materials and quantum cryptography, to name but a few. Due to the complexity of the subject area, the QST degree programme is aimed at students working at the cutting edge of quantum science and expanding existing research areas in the natural sciences (e.g. physics and chemistry), mathematics and engineering (e.g. computer science and electrical engineering).

School lab: PhotonLab

School classes carry out various experiments on optics, photonics and quantum physics. In addition to classic optics experiments and interferometry, the repertoire also includes experiments on quantum cryptography (analogy experiment) and a quantum random number generator. The PhotonLab is visited by around 100 school classes every year, who also gain an insight into current research through a guided tour of a real research laboratory. The PhotonLab is currently expanding its online programme, which is designed to optimally prepare pupils for their visit. Take a look around the PhotonLab and choose an experiment: PhotonLab, more will follow.

Further offers: Teacher training, student internships, support for competitions (GYPT, Jugend forscht) and seminar papers, hands-on stand at trade fairs such as Forscha, Open Day …

MCQST Outreach

The Exzellenzclusters Munich Center for Quantum Science and Technology (MCQST) organises various formats for the general public, such as open days at the various locations in Munich, public lectures on quantum science and technology and science slams. MCQST is involved in the development of qubit demonstrators, which are intended to make superposition and entanglement tangible and are being created as part of the QUANTA project. The demonstrators will then also be used in a permanent exhibition at the German Museum on light-matter interaction, which will include a temporary exhibition with current research topics from the cluster.

Other Projects

DigiQ GALaQSci

Weblinks

Quantum Science & Technology Photonlab Öffentlichkeitsarbeit Munich Center for Quantum Science and Technology

Münster | Universität Münster & Fachhochschule Münster

Prof. Dr. Stefan Heusler (UM)

Prof. Dr. Markus Gregor (FH)

Dr. Daniel Laumann (UM)

Dr. Alexander Pusch (UM)

Nils Haverkamp (UM)

Focal points
  • Empirical research on the teaching of quantum physics in schools, especially with regard to the qubit approach
  • Development and evaluation of 2nd generation quantum physics experiments at the university (internships and student labs), in particular using digital media (VR and AR)
Weblinks & Publications

O3Q-Projektseite

quantumvisions.net

Rostock | Universität Rostock

PD Dr. Heidi Reinholz

StR Lukas Maczewsky

Focal points
  • Public relations work in subproject Ö of the DFG's SFB 1477 "Light-Matter-Interactions"
  • Development of a photon lab (experiments on light, lasers and optical quantum physics) as part of the Teaching-Learning-Lab PhySch
  • Concept development for didactics of modern photonics and quantum physics (single photon experiments, topological insulators)
  • Development of further training courses for teachers on the subject of quantum physics
Weblinks & Publications

AG Reinholz

  • E. H. Krabbe, H. Reinholz, B. Vettin and R. Wodzinski, Licht and lichtbasierte Technologien im Physikunterricht, Sammelband (2015), ISBN: 978-9818197-1-7.
  • L. J. Maczewsky, K. Wang, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, M. Ehrhardt, M. Heinrich, D. N. Christodoulides, A. Szameit and A. A. Sukhorukov, Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices, Nat. Photonics 14, 76 (2020).
  • L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer and others, Nonlinearity-induced photonic topological insulator, Science 370, 701 (2020).

Stuttgart | Universität Stuttgart

Prof. Dr. Ronny Nawrodt

Existing offers for sixth form students
  • School laboratory (numerous experimental offers, for here: Interferometry, particle trap, spectroscopy, quantum cryptography, bang test, Mach-Zehnder, photon statistics, basics of modern optics (incl. quantum optics) etc.).
  • Vocational orientation courses in physics within a limited framework Access to laboratories
  • Customised offers for school visits, including integration into lessons where desired